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Vertical line segments tend to be perceived as longer
than horizontal ones of the same length, but this may in
part be due to configuration effects. To minimize such
effects, we used isolated line segments in a two-interval,
forced choice paradigm, not limiting ourselves to
horizontal and vertical. We fitted psychometric curves
using a Bayesian method that assumes that, for a given
subject, the lapse rate is the same across all conditions.
The closer a line segment’s orientation was to vertical,
the longer it was perceived to be. Moreover, subjects
tended to report the standard line (in the second
interval) as longer. The data were well described by a
model that contains both an orientation-dependent and
an interval-dependent multiplicative bias. Using this
model, we estimated that a vertical line was on average
perceived as 9.2% 6 2.1% longer than a horizontal line,
and a second-interval line was on average perceived as
2.4% 6 0.9% longer than a first-interval line. Moving
from a descriptive to an explanatory model, we
hypothesized that anisotropy in the polar angle of lines
in three dimensions underlies the horizontal–vertical
illusion, specifically, that line segments more often have
a polar angle of 908 (corresponding to the ground plane)
than any other polar angle. This model qualitatively
accounts not only for the empirical relationship between
projected length and projected orientation that predicts
the horizontal–vertical illusion, but also for the empirical
distribution of projected orientation in photographs of
natural scenes and for paradoxical results reported
earlier for slanted surfaces.

Introduction

The horizontal–vertical illusion (HVI) is the effect
that a vertical line is perceived as longer than a
horizontal line of the same length. This illusion may
have been first described by Fick in 1851 and first
studied systematically by Wilhelm Wundt in 1862. The

classic form of the illusion uses an ‘‘L’’ shape, and the
lengths of the legs of the L are compared (Figure 1A).
The HVI has been observed in both two-alternative,
forced choice designs (Avery & Day, 1969; Craven,
1993; Mamassian & de Montalembert, 2010; Wolfe,
Maloney, & Tam, 2005) and in continuous adjustment
designs (Brosvic & Cohen, 1988; Cormack & Cormack,
1974; Hamburger & Hansen, 2010; Higashiyama, 1996;
Künnapas, 1955, 1957b, 1959; Lipshits, McIntyre,
Zaoui, Gurfinkel, & Berthoz, 2001; Pollock & Chapa-
nis, 1952; Prinzmetal & Gettleman, 1993). Not only
vertical lines, but also lines of other nonhorizontal
orientations are perceived as longer than horizontal
lines of the same length (Cormack & Cormack, 1974;
Craven, 1993; Pollock & Chapanis, 1952). The HVI
also occurs when the observer provides a haptic-only
response (Gentaz & Hatwell, 2004; Heller, Calcaterra,
Burson, & Green, 1997; Heller & Joyner, 1993) and has
been observed across cultures (Jahoda & Stacey, 1970;
Segall, Campbell, & Herskovits, 1963). The strength of
the illusion is affected by the shape of the visual field
(Künnapas, 1957b, 1959; Pearce & Matin, 1969;
Prinzmetal & Gettleman, 1993; Williams & Enns,
1996), the presence of a depth or slant cue (Girgus &
Coren, 1975; Gregory, 1974; Schiffman & Thompson,
1975; Von Collani, 1985; Williams & Enns, 1996),
stimulus context (Armstrong & Marks, 1997), body
orientation (Klein, Li, & Durgin, 2016), and whether
you stand on top of a building (Jackson & Cormack,
2008).

Another factor affecting the strength of the HVI is
the configuration of the line segments, in particular,
whether one of the segments bisects the other (Brosvic
& Cohen, 1988; Cormack & Cormack, 1974; Finger &
Spelt, 1947; Girgus & Coren, 1975; Künnapas, 1955;
Mamassian & de Montalembert, 2010). One study
estimated the relative contributions of the ‘‘pure’’ HVI
and the bisection illusion using a model (Mamassian &
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de Montalembert, 2010), but this method was indirect.
Some studies presented the lines in separate intervals
(Armstrong & Marks, 1997; Teghtsoonian, 1972), but
these studies did not vary orientation beyond horizon-
tal and vertical.

Here, we characterize the ‘‘pure’’ HVI using a two-
interval design without limiting ourselves to horizon-
tal and vertical orientations. We optimized stimulus
design using a Bayesian adaptive method, which
allows for precise estimation of parameters with
relatively few trials. We introduce two models. The
first model is descriptive: Bias is multiplicative and
consists of one factor that depends on the stimulus
interval and one that depends on orientation. The
second model attempts to be explanatory: We show
that orientation-dependent length biases can arise
from anisotropy in the 3-D distribution of orientation
alone.

Data and code sharing

We made all data and code publicly available on
https://github.com/EmZhu/Horizontal-Vertical-Illusion.

Methods

Subjects

Nine subjects (four male, five female) participated in
this experiment. All subjects had normal or corrected-
to-normal vision as tested using a Snellen eye chart.
Subjects with corrected-to-normal vision wore contact
lenses, not spectacles, because they also had to wear an
eye patch. Subjects gave written informed consent and
received $70 for completing the whole experiment. The
study adhered to the Declaration of Helsinki and was

approved by the Institutional Review Board of New
York University.

Apparatus

Subjects viewed the stimuli on a display of 2048 by
1536 pixels with a resolution of 104 pixels per
centimeter and a refresh rate of 60 Hz. This display
(LG LP097QX1-SPA2) was the same as that used in
the 2013 iPad Air (Apple). We chose this display for
its high pixel density, which reduces aliasing of
oblique lines. The screen was attached to an arm of
adjustable height, which was mounted on a rail. A
chin rest was mounted on the same rail and adjusted
such that the subject’s viewing eye was looking
straight at the center of the screen. The distance
between the display and eye was 44 cm, which implies
that 1 cm on the screen corresponds to approximately
1.308 of visual angle.

In order to minimize external cues that could cause
length biases, we took three measures: (a) We
determined eye dominance using the Miles test.
Subjects wore a black eye patch covering their
nondominant eye. This minimizes effects due to the
anisotropy of the visual field (Michaels, 1960; Prinz-
metal & Gettleman, 1993). (b) We used a large piece of
black cardboard with a disc (12 cm in diameter) cut
out. The center of the disc was aligned with the center
of the screen. The cardboard blocked out visual
elements that could serve as references, such as the
edges of the screen, the edges of the table, and the edges
of the wall. (c) There were no light sources in the room
except for the display.

Stimuli

Stimuli consisted of white line segments (luminance
value: 250 out of 255) on a medium gray background

Figure 1. (A) Classic configuration used for studying the HVI (e.g., Künnapas, 1955). The vertical and horizontal line segments intersect

at the bottom left corner, forming an ‘‘L’’ shape. The segments are equally long, but you may perceive the vertical segment to be

longer. (B) Trial procedure in the present study. The subject viewed a line of variable length (the comparison line) through a circular

aperture, followed by a delay period, followed by a line of fixed length (3 cm, the standard line). We varied the orientations of both

lines. The subject reported which line appeared longer.
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(luminance value: 128). The maximum luminance
(corresponding to 255) was 390 cd/m2. For brevity, we
refer to line segments simply as lines. The midpoint of
each line was at the center of the screen. Lines were 2
pixels (0.2 mm) wide. The standard line was always 3
cm long. The length of the comparison line could take
values between 2 cm and 4 cm in 61 equal steps (equal
apart from rounding to an integer number of pixels).
Line orientations were 08 (horizontal), 308, 458, 608, 908
(vertical), 1208, 1358, and 1508. The fixation dot was 7
pixels (0.7 mm) in diameter. All stimuli were created
using Psychophysics Toolbox extensions (Brainard,
1997; Pelli, 1997) in MATLAB (The MathWorks,
Natick, MA). For antialiasing, we set the smoothing
option of ‘‘Screen(‘DrawLines’)’’ to 2, which is ‘‘high-
quality smoothing.’’ For Screen(‘BlendFunction’), we
chose the most common alpha-blending factors
‘GL_SRC_ALPHA’ (source) and ‘GL_ONE_MI-
NUS_SRC_ALPHA’ (destination).

Procedure (Figure 1B)

Trial

Each trial started with a red fixation dot in the center
of the screen (1000 ms), followed by a display of the
comparison line (100 ms), another screen with a red
fixation dot (1000 ms), a display of the standard line
(100 ms), and finally a screen with a blue fixation dot,
signaling subjects to report their response. The subject
pressed a key on a numeric keypad with the index or
ring finger of his or her right hand to indicate that he or
she perceived the comparison line or the standard line,
respectively, to be longer. Response time was not
limited. No feedback was provided.

Conditions and sessions

We chose the orientations of the standard and
comparison lines independently from the eight possible
values for a total of 64 orientation conditions. Each
session contained 10 trials in each orientation condition
for a total of 640 trials per session in pseudorandom
order. Each subject completed five sessions, together
containing 50 trials in each of the 64 orientation
conditions for a total of 3,200 trials.

Instructions and practice

At the start of the first session, we explained the task
to the subject. Specifically, we mentioned that the
second line in each trial would always have the same
length, that each line would vary in orientation from
trial to trial, and that the experiment was only about
judging length, not orientation. At the start of each
subsequent session, we checked for understanding by

asking the subjects what they had to report, which of
the two lines would always have the same length, and
whether they had to pay attention to orientation. In the
first session, subjects completed eight practice trials
right after the instructions; we did not analyze these
trials.

Stimulus selection

In the first trial within each of the 64 orientation
conditions, we chose the length of the comparison line
randomly from the 61 possible values. In every
subsequent trial in a given condition (across the entire
experiment), we chose the length of the comparison
line using Luigi Acerbi’s MATLAB implementation
(https://github.com/lacerbi/psybayes) of the W meth-
od by Kontsevich and Tyler (1999), extended to
include the lapse rate (Prins, 2012). This algorithm
maintained, separately for each orientation condition,
a joint posterior distribution over the point of
subjective equality (PSE; between 2 and 4 cm in 51
steps), the logarithm of the noise parameter [between
log(0.05 cm) and log(1.5 cm) in 25 steps], and the lapse
rate (between 0 and 0.2 in 25 steps) of the psycho-
metric curve in that condition. After each subject
response, the algorithm updated this posterior and
returned the length of the comparison line for the next
trial to maximize the expected information gain.
Specifically, we minimized the entropy of the distri-
bution after the next trial, averaged over the two
possible responses and weighted by the probability of
those responses under the current posterior. We used
the following priors:

� For the PSE, a discretized normal distribution with
a mean of 3 cm and a standard deviation of 2 cm.
� For the logarithm of the noise parameter, a
uniform distribution across the possible values;
this corresponds to a Jeffreys’ prior, which has the
desirable property of being invariant under repar-
ametrizations.
� For the lapse rate, a beta distribution with
parameters 1 and 24. This prior is monotonically
decreasing, so favors low lapse rates.

The exact form of these priors is not very important:
First, they will quickly get overridden by the evidence
from the subject responses; second, the proof of
stimulus selection is in the pudding, and we show below
that the chosen stimuli suffice for accurate estimation
of psychometric curve parameters.

Psychometric curve fitting

The fitting of the psychometric curves is complicated
by the fact that we assume a single lapse rate across all
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64 orientation conditions. In a given trial in the ith
condition, we assume that the probability of reporting
that the comparison line was longer takes the form
(Wichmann & Hill, 2001)

p report ‘‘comparison longer’’js; li; ri; kð Þ

¼ k
2
þ 1� kð ÞU s;li; rið Þ; ð1Þ

where s is the length of the comparison line on that
trial, li is the PSE in the ith condition, ri is the noise
parameter in the ith condition, and k is the lapse rate.
We assume that the lapse rate is shared across all
conditions. For each individual subject, we estimated
the 64 values of l, the 64 values of r, and k using
posterior mean estimation.

We will need the log likelihood function in each
individual condition, denoted by LLi; this function is
defined as

LLi li; ri; kð Þ ¼ log p dataijli; ri; kð Þ

¼
X50
j¼1

log p reportjjsj;li; ri; k
� �

; ð2Þ

where i is the condition index, j is the trial index within
the condition, reportj is the subject’s report (‘‘compar-
ison longer’’ or ‘‘standard longer’’) on the jth trial, sj is
the comparison length on the jth trial, and
p(reportjjsj,li,ri,ki) is given by Equation 1.

The posteriors over the parameters can now be
expressed in terms of the log likelihood function (for
the derivation, see Appendix A):

p kjdatað Þ ¼

Q64
k¼1

RR
eLLk lk;rk;kð Þ dlk drk

R Q64
k¼1

RR
eLLk lk;rk;kð Þ dlk drk

� �
dk

p lijdata; kð Þ ¼
R
eLLi li;ri;kð Þ driRR

eLLi li;ri;kð Þ dli dri

p lijdata; kð Þ ¼
R
eLLi li;ri;kð Þ dliRR

eLLi li;ri;kð Þ dli dri

: ð3Þ

Finally, we obtain Bayesian least-squares estimates of
all parameters by taking the means of their posteriors:

k̂ ¼
Z

kp kjdatað Þ dk

l̂i ¼
Z

lip lijdatað Þ dli

r̂i ¼
Z

rip rijdatað Þ dri

: ð4Þ

We evaluated all integrals through Riemann integra-
tion using linear grids over li (between 2 and 4 cm in 51

steps), ri (between 0.05 cm and 1.5 cm in 25 steps), and
k (between 0 and 0.2 in 25 steps).

Results

Psychometric curves

Using a two-interval, forced choice paradigm, we
studied how perceived length depends on orientation
for isolated stimuli. We controlled visual field using an
eye patch and a circular aperture. Standard and
comparison lines could each take one of eight
orientations for a total of 64 orientation conditions.
Because the data were collected using an adaptive
method, plotting the raw data would result in clusters
of points that are not helpful in conveying the
underlying pattern. Therefore, we show only the fits to
the data (Figure 2). For each condition, we show both
the mean fit (solid lines) and the standard error of the
fit across subjects (shaded regions). Visual inspection
indicates that in all conditions, the psychometric curve
for a vertical comparison line lies to the left of the
psychometric curve for a horizontal comparison line,
meaning that the vertical line is perceived as longer.

We estimated PSEs, noise parameters, and lapse
rates of the psychometric curves using Bayesian least-
squares estimation (see Methods and Appendix A). The
Bayesian posterior distributions in Equation 3 not only
produce the point estimates in Equation 4, but also
uncertainty levels. Averaged across all 64 conditions,
the posterior standard deviation of the PSE was 0.083
6 0.011 cm (here and elsewhere: mean 6 standard
error of the mean), indicating that 50 trials per
condition and the adaptive Bayesian method produced
rather certain estimates.

Figure 3A shows the estimated PSE as a function of
the orientation of the comparison line for different
orientations of the standard line. This demonstrates the
HVI: To make a horizontal line appear equally long as
a nonhorizontal line, it has to be longer. A two-way
ANOVA revealed a significant main effect of compar-
ison orientation on PSE, F(7, 56)¼ 18.43, p , 10�11;
a significant main effect of standard orientation, F(7,
56)¼ 13.18, p , 10�9; and no significant interaction,
F(49, 392) ¼ 1.21, p ¼ 0.17.

Examining the noise parameter r of the psychomet-
ric curves, we did not find a significant effect of
comparison orientation, F(7, 56) ¼ 1.30, p ¼ 0.27; a
significant effect of standard orientation, F(7, 56) ¼
1.36, p¼ 0.24; or a significant interaction, F(49, 392)¼
1.28, p¼ 0.11 (see Figure A2). This suggests that length
was not encoded with substantially greater precision at
some orientations than at others.
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Bias toward second interval

Selecting only the conditions in which hcomparison ¼
hstandard, we obtained Figure 3B. This shows a clear bias
toward reporting the standard line (the line in the
second interval) as longer. For each subject, we defined
the interval bias ratio (IBR) as the average PSE across
all conditions with hcomparison¼ hstandard, divided by the

length of the standard. The mean IBR estimated in this
way was 1.0224 6 0.0088, or 2.24% 6 0.88% larger
than 1.

Multiplicative bias model

Next, we were interested in the ratios of perceived
lengths at different orientations. To infer those, we

Figure 2. Fitted psychometric curves. Each curve shows the fit of a cumulative Gaussian distribution with a lapse rate to the

proportion of trials in which the comparison line was reported to appear longer as a function of the length of the comparison line.We

fitted the data per subject but show the mean across subjects (solid lines) and 61 SEM (shaded areas). Across plots, the orientation

of the standard line differed as indicated by the black icons: In the first two rows, the orientation of the standard line was (from left to

right) 08, 308, 458, or 608; in the bottom two rows, it was 1508, 1358, 1208, or 908. Within each plot, each color corresponds to an

orientation of the comparison line as indicated by the colored icons: In the first and third rows, these orientations were 08, 308, 458,

608, or 908; in the second and fourth rows, they were 908, 1208, 1358, 1508, or 08. The psychometric curve for a 08 comparison line (red

curves) is consistently to the right of the psychometric curve for a 908 comparison line (blue curve), which means vertical lines were

perceived as longer than horizontal lines.
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have to express the measured PSEs in terms of
perceived lengths. We use a descriptive model in which

the average perceived length L̂
D E

of a line of

orientation h equals the true length L multiplied by an
orientation-dependent bias factor OB(h) as well as by
an interval-dependent bias factor IB(interval):

L̂
D E

¼ IB intervalð ÞOB hð ÞL:

The PSE is the true length L of the comparison for
which the average perceived length is equal to the

average perceived length of the standard. Thus,

L̂comparison

D E
¼ L̂standard

D E
OB hcomparison

� �
� PSE

¼ IB second intervalð Þ
IB first intervalð Þ
� OB hstandardð Þ � Lstandard; ð5Þ

where Lstandard ¼ 3 cm. It follows that

PSE ¼ IB second intervalð Þ
IB first intervalð Þ �

OB hstandardð Þ
OB hcomparison

� �
� Lstandard: ð6Þ

By applying the definition of IBR from the previous

subsection, we find IBR ¼ [IB(second interval)] /
[IB(first interval)]. Both hcomparison and hstandard take
eight possible values, giving rise to 64 PSE values. To fit
this descriptive model, we minimized the sum of the
squares of the differences between the empirical PSEs
and the ones described by Equation 6:

Minimize
X64
i¼1

PSEi �
OB hstandard;i

� �
OB hcomparison;i

� � � IBR � Lstandard

 !2

:

Because this objective function is invariant to a
common scaling of all OBs, we define the normalized
orientation-dependent bias as OB* (h)¼ [OB(h)] /
[(OB(h ¼ 08)], so that the objective function becomes

X64
i¼1

PSEi �
OB� hstandard;i

� �
OB� hcomparison;i

� � � IBR � Lstandard

 !2

:

We then minimized this objective function over the
eight parameters: IBR, OB* (308), OB* (458), . . ., OB*
(1508), excluding OB* (08), which by definition equals 1.
We implemented the minimization, for each individual
subject, using fmincon in Matlab with 100 random
initializations.

Figure 3. (A) Mean and standard error of the mean of the estimated PSE as a function of the orientation of the comparison line for

different orientations of the standard line (divided over two plots for visibility). The black dashed line represents the length of the

standard line (3 cm, dashed line). On each curve, the PSE of a nonhorizontal comparison line is lower than that of a horizontal

comparison line (U shape); in other words, a nonhorizontal comparison line does not need to be as long as a horizontal comparison

line to be perceived as equally long. Looking across curves, a comparison line of a given orientation needs to be longer to be

perceived as equally long as a nonhorizontal standard line than as a horizontal standard line. (B) Mean and standard error of the

mean of the estimated PSE for equal hstandard and hcomparison. These data are a subset of the data in panel A. Subjects had an overall

bias for reporting that the standard line (in the second interval) was longer.

Journal of Vision (2017) 17(2):20, 1–19 Zhu & Ma 6

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/936040/ on 03/01/2017



This minimization yielded a mean estimated IBR of
1.0238 6 0.0094—in line with the estimates obtained
from only the hcomparison¼hstandard conditions (reported
in the previous subsection). Next, Figure 4 and Table 1
show the estimated normalized orientation-dependent
bias. The orientation-dependent bias tends to be
stronger for orientations closer to vertical. Signed-rank
tests did not reveal significant differences between the
normalized orientation-dependent biases at 308 and
1508 (z ¼ 1.24, p¼ 0.21), between the ones at 458 and
1358 (z¼ 1.71, p¼ 0.09), or between the ones at 608 and
1208 (z ¼ 1.13, p¼ 0.26). Thus, we did not find any
evidence for asymmetry around vertical.

Comparison with earlier work

In terms of the HVI in the narrow sense, our
estimated normalized vertical bias of 9.2% 6 2.1% is in
reasonable agreement with some previous studies,
which found, for example, 8.3% and 8.7% (Pollock &
Chapanis, 1952), 7.1% (Künnapas, 1957b), 11.5% 6
1.4% (Craven, 1993), and 9.3% and 8.9% (Armstrong &
Marks, 1997), but substantially larger than in others,
such as 2.6% (Avery & Day, 1969), 4.0% (Künnapas,
1957a), and 6% (Mamassian & de Montalembert,
2010).

More interestingly, we can compare our results to
those of other studies of the HVI that varied
orientation: Pollock and Chapanis (1952), Cormack
and Cormack (1974), and Craven (1993). In all cases,
we are interested in the orientation-dependent bias ratio
[OB(hstandard)] / [OB(hcomparison)], which in our data is
equal to PSE / (IBR 3 Lstandard) , according to
Equation 6. Comparison with these papers is compli-
cated by two factors. First, we varied the orientations
of both the standard and the comparison lines, and the
earlier studies always fixed the orientation of one of
them. Therefore, in the following analyses, we selected
the corresponding subset of our trials. Second, the
earlier studies used different metrics than we did to
report the illusion; we map all metrics to ours, namely
[OB(hstandard)] / [OB(hcomparison)]. We now review the
details of the three studies.

Figure 4. Multiplicative bias model. (A) Estimated normalized orientation-dependent bias as a function of orientation, estimated from

the multiplicative bias model. Colors: individual subjects. Black: mean and standard error of the mean. (B) Fitted PSE values according

to the multiplicative bias model. The model closely accounts for the empirical PSEs in Figure 3A.

Orientation

Normalized orientation-dependent bias,

OB 3 (mean 6 standard error of the mean)

08 (horizontal) 1 (by definition)

308 1.050 6 0.010

458 1.074 6 0.014

608 1.092 6 0.018

908 (vertical) 1.092 6 0.021

1208 1.099 6 0.021

1358 1.089 6 0.017

1508 1.063 6 0.011

Table 1. Normalized orientation-dependent bias as a function of
orientation.
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Pollock and Chapanis (1952) used an adjustment
task in which subjects viewed a horizontal or vertical
standard line of length 3 in. (7.62 cm) or 6 in. (15.24
cm) and adjusted a comparison line of variable
orientation to match the standard line in length.
Standard and comparison lines were presented side by
side with a separation of 9 in. in the 3-in. condition or a
separation of 18 in. in the 6-in. condition. Twenty
subjects each performed two judgments in each
condition. The authors reported the mean and standard
deviation of ‘‘error,’’ the difference between the length
of the comparison and the length of the standard. In
terms of our variables, this is

Error [Lcomparison � Lstandard

¼ OB hstandardð Þ
OB hcomparison

� �� 1

 !
Lstandard:

In order to compare their data with ours, we computed
mean and standard error of the mean of (Error /
Lstandard)þ 1 based on the data given in table I of
Pollock and Chapanis (1952) (this table only gives
standard deviations, so we divided those values by

ffiffiffiffiffi
40
p

,
which is the total number of judgments in each
condition).

Craven (1993) used a two-alternative forced-choice
task in which subjects simultaneously viewed a
horizontal standard line of length 50 arcmin of visual
angle (1.45 cm at their viewing distance) and a
nonhorizontal comparison length. Standard and com-
parison were spatially separated in both the x and y
dimensions. Subjects reported whether the left or the
right line appeared longer. The author reported mean
and standard error of the mean of the apparent length
of the nonhorizontal line with respect to the horizontal
length; because the author used an additive model, we
interpret this quantity as

Lstandard � PSE� Lstandardð Þ
Lstandard

¼ 2� PSE

Lstandard
:

Cormack and Cormack (1974) used an adjustment
task in which subjects viewed a nonhorizontal standard
line of length 10 cm. Subjects adjusted a horizontal
comparison line to match the perceived length of the
standard. Standard and comparison formed a config-
uration; here, we only select their experiments in which
the configuration was left/right symmetric. In ‘‘cross-
like’’ configurations, the midpoints of standard and
comparison coincided; in ‘‘inverted T-like’’ configura-
tions, the lower end of the standard line was the
midpoint of the comparison line. The authors reported
mean and standard error of the mean of the ‘‘illusion
magnitude,’’ which is the same as error above but with
a different Lstandard (10 cm).

We extracted data from the first panel of figure 1 of
Cormack and Cormack (1974) and from figure 1 of

Craven (1993) using the free, web-based data-extrac-
tion software WebPlotDigitizer (Rohatgi, 2016); we
obtained the Pollock & Chapanis (1952) data from
their table 1. For our data, we estimated the
orientation-dependent bias ratios using the appropriate
subset of trials and individual-subject IBR estimates.
Figure 5 shows the resulting comparison. The corre-
spondence is qualitatively good. To quantify the
similarity, we made pairwise comparisons of the means
between our study and each earlier study. Because the
orientations used were not identical between any pair
of studies, we interpolated both ways between the y
values using the piecewise cubic hermite interpolating
polynomial algorithm (interp1 with ‘‘pchip’’ in Matlab).
We did not allow for extrapolation, i.e., we limited the
orientations to the narrower range between the two
studies. We then evaluated goodness of fit by R2 on the
interpolated means:

R2 ¼ 1� var mean study1�mean study2ð Þ
var mean study1ð Þþvar mean study2ð Þ

2:

The resulting values are shown in Table 2.
The only poor correspondence is between our study

and the cross-like (‘‘þ’’) configuration in Cormack and
Cormack (1974). This is due to an irregular point at
vertical in their curve: The vertical line was perceived as
shorter than lines at orientations of 458, 67.58, 112.58,
and 1358. This is an effect that was emphasized by later
authors (Craven, 1993; Howe & Purves, 2002). By
contrast, in our data, signed-rank tests did not reveal
significant differences between the normalized orienta-
tion-dependent biases at 608 and 908 (z¼0.18, p¼0.86),
between the ones at 908 and 1208 (z¼ 0.77, p¼ 0.44), or
between the ones at 908 and 1358 (z¼ 0.059, p¼ 0.95); a
signed-rank test did reveal a significant difference
between the normalized bias factors at 458 and 908 (z¼
2.43, p ¼ 0.015) but in the direction opposite to
Cormack and Cormack. We have no good explanation
for this discrepancy, but we suspect that it is due to a
special property of the ‘‘þ’’ configuration.

Study

R
2 with

our study

(Figure 5)

Pollock and Chapanis (1952) 3-in. horizontal standard 0.64

Pollock and Chapanis 6-in. horizontal standard 0.68

Pollock and Chapanis 3-in. vertical standard 0.60

Pollock and Chapanis 6-in. vertical standard 0.73

Craven (1993) 0.80

Cormack and Cormack (1974) cross-like configuration �0.10
Cormack and Cormack inverted T-like configuration 0.92

Table 2. Correspondence between earlier studies and ours.
Notes: We use R

2 as a measure of similarity. Because this is not
linear regression, R2 can be negative, and the value of�0.10 is
not a mistake.
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Anisotropy model

The multiplicative bias model describes the measured
PSEs but does not explain the origin of orientation-
dependent length biases. If the observer is rational,
such biases would result from statistical inference under
ambiguity. The ambiguity consists of the fact that a
given retinal length could have been produced by
infinitely many possible physical lengths. The rational
way to resolve this ambiguity would be to determine
which physical length is most probable for a given
retinal length. Length biases would then be orientation-
dependent if the retinal orientation and the retinal
length of a line segment are correlated for a given
physical length. Howe and Purves (2002) measured this
correlation by using a laser range scanner to record the
3-D locations of points in a natural scene, then
randomly sampling pairs of points in the projected
image and obtaining the mean ratio of physical length
to projected length as a function of projected orienta-
tion (Figure 7B). They found that this mean ratio was
higher for nonhorizontal projected orientations than
for horizontal and highest at projected orientations of
about 608 and 1208. For line segments associated with
luminance contrast boundaries, the data were noisier

than for pairs of points but showed qualitatively the
same pattern although of a much larger magnitude.
Howe and Purves proceeded to hypothesize that the
orientation dependence of the mean ratio of physical to
projected length is in large part due to the presence of
the ground plane in most natural scenes: In this plane,
lines that extend more in depth have projections that
tend toward vertical and, at the same time, are
foreshortened to a greater extent. Indeed, they found
that when the ground plane was left out, the orientation
dependence of the mean ratio was much reduced.

Here, we extend these ideas by providing an explicit
geometric model of the projection of 3-D orientations
onto a plane and performing simulations to determine
the effect of particular types of anisotropy in three
dimensions. We refer to this as the anisotropy model.
We constrain this model by using not only the Howe
and Purves (2002) data, but also the distribution of
projected orientations in natural scenes.

Geometry

We first need to express the projected orientation
and length of a line in terms of that line’s physical
orientation and length in 3-D space. We sketched the

Figure 5. Comparison with earlier work. Comparison of the estimated orientation-dependent bias ratios (standard to comparison,

estimated from the multiplicative bias model) between our data (without configuration) and earlier studies (with configuration). (A)

Conditions in which the standard line (fixed length) was horizontal. (B) Conditions in which the standard line was vertical. (C)

Conditions in which the comparison line (variable length) was horizontal.
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relevant geometry in Figure 6. We consider a line
segment of half length L whose midpoint is the origin
of a 3-D Cartesian coordinate system. The line segment
has spherical coordinates h (azimuth, with h¼ 0
corresponding to the x-axis) and u (polar angle, with u
¼ 0 corresponding to a vertical line). This means that
one of its end points has Cartesian coordinates v ¼
L(cosh sinu, sinh sinu, cosu), and the other the
negative of this. An observer’s eye is located on the x¼
0 plane and views the origin at an angle a; in other
words, the eye’s coordinates are n¼ (0,�cosa, sina). We
define a projection plane P through the origin,
orthogonal to the observer’s line of sight (i.e., a
frontoparallel plane); in other words, n is the unit
normal vector of P. The projection of the line segment
onto P will be a scaled version of the projection of the
line segment onto the observer’s retina, provided that
we can reasonably approximate the retina as locally flat
(this is reasonable when the observer is not too close to
the line segment). Because we are interested in length
bias ratios, the scale factor is irrelevant.

Expressions for projected length and projected
orientation

We are now ready to derive expressions for projected
length and projected orientation. Thus, our goal is to
map properties of the vector v to properties of its
projection onto the plane P, vproj:

3D Vector v
Half � length : L
Polar angle u
Azimuth h ðuniformly distributedÞ

Projection plane P
Normal n ¼ 0; � cos a; sin að Þ

9>>>>>>=
>>>>>>;

!
Projected vector vproj

Projected half � length Lproj

Projected orientation hproj

8<
: : ð7Þ

The projection of v onto P is v � (v�n)n, where � is the
inner product. We work this out in our case:

vproj ¼ v� v � nð Þn

¼ L
cos h sin u
sin h sin u

cos u

2
4

3
5

� L � sin h sin u cos aþ cos u sin að Þ
0

� cos a
sin a

2
4

3
5

¼ L
cos h sin u

sin h sin usin2aþ cos u cos a sin a
sin h sin u sin a cos aþ cos uþ cos2a

2
4

3
5:

The length of this projected vector can be evaluated as

Lproj ¼ vproj

�� ��
¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2hsin2uþ sin h sin u sin aþ cos u cos að Þ2

q
:

We define the ‘‘foreshortening factor’’ (FF) as the ratio

between the projected length and the physical length:

FF h;u; að Þ

¼ Lproj

L

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2hsin2uþ sin h sin u sin aþcos u cos að Þ2

q
: ð8Þ

The projected orientation hproj is defined within the

projection plane P as the angle between vproj and the x-

axis (which lies in P). The cosine of this angle is

cos hproj ¼

vproj �
1
0
0

2
4
3
5

vproj

�� �� ¼ L cos h sin u
Lproj

¼ cos h sin u
FF h;u; að Þ :

This can be simplified using the tangent:

Figure 6. Anisotropy model. (A) Three-dimensional geometry of line length perception. A line segment (red) has its midpoint at the

origin. P is the frontoparallel plane through the origin, and n is the normal vector to the plane. a is the viewing angle. (B) Spherical

coordinates of one end of the line segment. h is the azimuth, u the polar angle. (C) Projected length Lproj and projected angle hproj of
the line segment.
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Figure 7. The anisotropy model can simultaneously account for the distribution of projected orientation and for orientation-

dependent length biases. (A) Distribution of projected orientation: natural statistics from Girshick et al. (2011) (black) and anisotropy

model (purple). (B) Normalized mean ratio of physical length to projected length: natural statistics from Howe and Purves (2002)

(black) and anisotropy model. (C) When polar angle is uniformly distributed (isotropic orientation, left), the model matches neither

the distribution of projected orientation (center) nor the relationship between projected length and projected orientation (right). (D)

When all lines are in the ground plane (polar angle of 908), the model reproduces the HVI but not the distribution of projected

orientation. (E) Mixture model: To obtain approximately equal prevalence of horizontal and vertical projected orientations (center), a

polar angle of 908 needs to be much more common than all others (left).
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tan hproj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

cos2hproj
� 1

s
¼ tan h sin aþ cos a

cos h tan u
:

Two special cases provide useful sanity checks:

� If a¼ p/2, the observer has a top view. Then, FF¼
sinu and hproj ¼ h.
� If u ¼ 0, the line is vertical. Then, FF ¼ cosa and

hproj ¼ p/2 (also vertical).

In view of the shared dependences on h, u, and a,
projected length Lproj and projected orientation hproj
will not be independent.

The distributions of projected length and
projected orientation

For an observer in a real-world environment, the
polar angle u, the azimuth h, and the viewing angle a
will not be constant but will obey a probability
distribution p(h, u, a). For a given true length,
projected length and projected orientation will inherit
their distribution from this distribution through the
mapping in Equation 7. Formally,

p Lproj; hproj Lj
� �

¼
ZZZ

p Lproj; hproj L; h;u; aj
� �

p h;u; að Þ dh du da

¼
ZZZ

p hproj Lproj; h;u
��� �

p Lproj L; h;u; aj
� �

� p h;u; að Þ dh du da

¼
ZZZ

d hproj � arccos
cos h sin u
FF h;u; að Þ

� �
3 d Lproj � L � FF h;u; að Þ
� �

3 p h;u; að Þ dh du da

Some data from natural scenes are available to
constrain this joint distribution over Lproj and hproj.
First, to obtain a marginal distribution over projected
orientation, p(hproj), Girshick, Landy, and Simoncelli
(2011) extracted orientations from photographs of
natural scenes (for a predecessor of this work, see
Coppola, Purves, McCoy, & Purves, 1998). The data
show that a projected orientation is more often
horizontal or vertical than oblique (Figure 7A). Second,
regarding the conditional distribution p(Lproj jhproj, L),
which captures the relationship between projected length
and projected orientation, we use the aforementioned
data from Howe and Purves (2002) (Figure 7B).

Simulations

The idea of the anisotropy model is that we can
account for p(Lproj, hproj j L) and, in particular, for the

summary statistics in Figure 7A and B, by suitably
choosing the distribution p(h, u, a). Without loss of
generality, we set L ¼ 1. To further constrain the
problem, we assume that h, u, and a are independent so
that their joint distribution factorizes: p(h, u, a)¼
p(h)p(u)p(a). We also assume that azimuth h is
uniformly distributed between 0 and 2p; it seems
strange to assume anything else. Then, anisotropy can
only result from p(u) or p(a) not being uniform. For
simplicity, we choose p(a) to be uniform either on the
interval [�458, 458] (and 0 outside it) or on [�908, 908].

We performed three sets of simulations, each with a
different choice of p(u). In each simulation, we
randomly drew h, u, and a from their respective
distributions and computed the histogram of projected
orientations as well as the mean of the inverse of
projected length for different projected orientation
bins. The mean of the inverse of projected length
corresponds to the mean of the ratio of physical to
projected length that Howe and Purves (2002) use
because our physical length equals one.

In Simulation 1, we assumed that p(u) is uniform
(Figure 7C, left), which means that the distribution of
line orientation in 3-D space is isotropic. Nevertheless,
the distribution of projected orientation is not uniform
at all but has a strong peak at vertical (Figure 7C,
center). The projected length is greater for vertical than
for horizontal (Figure 7C, right), which contradicts the
HVI. This suggests that, in the absence of true
correlations between length and orientation in the
world, anisotropy is needed to explain the HVI.

In Simulation 2 (Figure 7D, left), we consider an
extremely anisotropic distribution, in which all lines lie
in the horizontal plane (the ground plane); in other
words, z¼ 0 or u¼p/2. Then, the foreshortening factor

is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2hcos2a
p

, and the tangent of the projected
angle is tan hproj ¼ tan h sin a. This predicts that
projected orientation is much more often horizontal
than any other orientation without vertical being
special (Figure 7D, center). It also predicts that the
projected length is smaller for projected orientations
closer to vertical (Figure 7D, right) as already noted by
Howe and Purves (2002). Both effects are qualitatively
more consistent with the data, in particular with the
HVI, than Simulation 1.

In Simulation 3, we used a mixture of the uniform
distribution from Simulation 1 and the delta function
from Simulation 2. We chose the mixture proportion of
the delta function to be 0.45. This would correspond to
a world in which a large proportion of lines lie in the
ground plane, and other polar angles are equally
represented. The resulting distribution of hproj (Figure
7E, center) is qualitatively similar to the distribution of
projected orientations reported by Girshick et al. (2011)
(Figure 7A). As we might expect from Simulation 1, a
polar angle of p/2 (horizontal) needs to be much more
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frequent than a polar angle of 0 or p (vertical) for a
projected orientation of horizontal to be about as
frequent as a projected orientation of vertical. Fur-
thermore, when p(a) is uniform on [�p/2, p/2], these
choices produce a pattern of projected length as a
function of orientation that is consistent with the HVI
(Figure 7E, right). To compare with the data from
Howe and Purves (2002) (Figure 7B), we normalized
the mean inverse projected length by dividing by its
value in the bin that includes horizontal (hproj¼ 08); this
yields a curve similar to the data (Figure 7B). The
magnitude of the effect is off, but the empirical data are
also equivocal on the magnitude because, for contours,
the mean ratio might be much higher than the data in
Figure 7B (Howe & Purves, 2002). We conclude that a
high prevalence of ground plane lines with a broad
distribution of other polar angles can qualitatively
account for both the empirical distribution of orienta-
tion on the retina and for the empirical relationship
between retinal length and retinal orientation.

Relationship to behavior

So far, we have only explored the distribution of
orientations and lengths that the retina inherits from the
3-D world; in other words, we have described a
‘‘forward model’’ or ‘‘generative model’’ of retinal
orientations and lengths. We have not yet described how
the observer would utilize these statistics when doing our
task. Such a description is naturally provided by
Bayesian decision theory. In a Bayesian explanation, the
observer would regard an image of a line segment
viewed during the experiment as a photograph of a line
segment in 3-D space. The observables are then
projected length Lproj and projected orientation hproj
whereas the length of the 3-D line segment L, its angles h
and u, and the viewing angle of the camera a, are not
observable. The generative model would be specified by
the conditional distribution p(Lproj, hproj j L). The ob-
server would infer L from Lproj and hproj while margin-
alizing over h, u, and a. In this inference, p(Lproj, hproj j
L) would serve as the likelihood function over L. The
likelihood functions over L from the first and second
intervals would be used to make the decision. If, for a
given projected orientation hproj, the FF Lproj/L tends to
be lower, the observer will be biased to judge the line at
that projected orientation as longer to ‘‘compensate for’’
the foreshortening. Thus, the observer would infer that a
vertical line (hproj¼ 908) was longer than a horizontal
line (hproj¼ 0) of the same retinal length. Thus, in a
Bayesian view, the distribution p(Lproj jhproj, L) would be
the basis for orientation-dependent length biases. The
Bayesian strategy would not be optimal with respect to
the laboratory statistics; it would have been optimal if
the laboratory had been the real world.

Based on Figure 7B, this inference model is
qualitatively consistent with one aspect of our behav-
ioral data—nonhorizontal lines are judged as longer
than horizontal lines—but not with another; our
subjects did not show a dip in perceived length at
vertical orientations. It should be kept in mind that a
full-fledged inference model goes beyond Figure 7B
because that figure only shows the mean of the ratio L/
Lproj, not the distribution p(Lproj jhproj, L). Given how
many poorly justified assumptions we already had to
make to match the data in Figure 7A and B, there is
little point in trying to work out the inference process in
detail. Instead, we view the anisotropy model as a proof
of concept that anisotropy in polar angle might account
for orientation-dependent length biases.

Effect of slant: A critique of Hibbard, Goutcher,
O’Kane, and Scarfe (2012)

Although not fully worked out, the anisotropy
model is Bayesian in the same vein as the model
proposed by Howe and Purves (2002). Hibbard et al.
(2012) criticized those authors’ Bayesian explanation of
the HVI based on an experiment using virtual slanted
surfaces. They provided binocular and texture cues
about slant, and the subject had to adjust the image
aspect ratio to make a slanted ellipse appear circular
(Figure 8A). They reasoned that the HVI results from
overestimating the slant of a frontoparallel surface
based on a prior favoring highly slanted surfaces (i.e.,
with the top farther away than the bottom). They
attempted to nullify the effect of this prior by providing
a negative slant measurement (i.e., one with the top
closer than the bottom). The idea was that for some
value of this measurement, the posterior over slant
would be centered near frontoparallel, and the HVI
should disappear. Instead, they found that the HVI
persisted, leading them to reject the Bayesian frame-
work. They concluded by describing the subject’s
reported image aspect ratio as a function of slant using
a cosine function, acknowledging that this was heuristic
rather than principled.

Their argument might be based on a faulty
assumption about the prior distribution over slant.
Hibbard et al. (2012) modeled the prior over slant as a
Gaussian distribution (Figure 8A). By contrast, in the
anisotropy model, it is far from Gaussian. To see this,
first consider the prior over polar angle (Figure 7E),
which consists of a peak at 908 for the ground plane
and a uniform distribution elsewhere. Restricted to h¼
6908 (the plane formed by the observer’s line of sight
and the ground plane normal), this translates to the
prior over slant depicted in Figure 8B (solid line), which
has peaks at 6908 and a uniform distribution
elsewhere. Multiplying this prior by the likelihood
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corresponding to the negative slant cue yields a
posterior distribution that is nearly identical to the
likelihood: This is because the region of high prior
density corresponds to low likelihood, thereby remov-
ing the effect of the prior. Even if the peaks in the prior
density are wider, the posterior shifts toward 6908
rather than toward 08. In either case, the observer is
predicted to set lower aspect ratios for surfaces slanted
away from frontoparallel in either direction. In the
extreme case that the slant cue provides perfect
information about slant, we can simply apply Equation
8 with h¼6908 to find that FF¼ jcos(u a)j, which has
exactly the same cosine form as advocated by Hibbard
et al. Thus, Hibbard et al.’s rejection of a Bayesian
account might be premature.

Discussion

Using a two-interval design with a circular visual
field and Bayesian adaptive stimulus selection, we
studied the HVI in the absence of configuration
effects. We varied the orientations of both the
standard and the comparison line in a full factorial
design. First, we reproduced the illusion. Second,
specific to the two-interval design, we found an overall
bias toward reporting that the standard line (in the
second interval) was longer; we estimated the corre-
sponding bias to be 1.0224 6 0.0088 using the PSEs
from the conditions in which standard and compar-
ison had the same orientation and as 1.0238 6 0.0094
from a multiplicative bias model applied to all
conditions. Third, using that same model, we found a

gradual, sine-like increase of the normalized orienta-
tion-dependent bias going from horizontal to vertical
with an estimated value of 1.092 6 0.021 at vertical.
Fourth, also when correcting for the interval bias, we
found that the orientation-dependent length biases in
our data were quantitatively similar to those reported
in three earlier studies. Fifth, we developed a model in
which a simple anisotropy in the polar angle of line
segments in three dimensions, after projection, ac-
counts for both the observed distribution of projected
orientations and for the observed relationship between
projected length and projected orientation; the latter,
combined with Bayesian inference, might account for
orientation-dependent length biases. The model pre-
dicts that a polar angle of 908 (corresponding to the
ground plane) is much more common than any other
polar angle. Sixth, the model also reconciles Hibbard
et al.’s (2012) results for slanted surfaces with a
Bayesian account.

Interval biases have been found in many previous
studies, but depending on different factors, such as
interval length, stimulus magnitude, and distractors, in
either direction (Ashourian & Loewenstein, 2011; v. G.
T. Fechner, 1860; Fraisse, 1948; Hellström, 1985;
Hollingworth, 1910; Needham, 1935; Vierordt, 1868;
Woodrow, 1933; Yeshurun, Carrasco, & Maloney,
2008). Theories proposed for these biases include a
‘‘persistence’’ of the first stimulus (G. T. Fechner, 1882;
v. G. T. Fechner, 1860), a central tendency (Holling-
worth, 1910), and a Bayesian prior (Ashourian &
Loewenstein, 2011). Our study cannot distinguish
between these theories. Moreover, in our design, we
cannot rule out that the fact the standard line was
always in the second interval played a role.

Figure 8. The anisotropy model applied to slanted surfaces. (A) Solid: prior distribution over slant assumed by Hibbard et al. (2012).

Dashed: example likelihood over slant based on a slant cue. Dotted: the posterior peaks in between the likelihood and the prior. (B)

Solid: prior distribution over slant corresponding to the prior over polar angle from Figure 7E (with the peaks at �908 and 908

widened slightly for visibility. Dashed: same likelihood as in panel A. The posterior over slant will be nearly identical to the likelihood.

Journal of Vision (2017) 17(2):20, 1–19 Zhu & Ma 14

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/936040/ on 03/01/2017



More work is needed to establish whether orienta-
tion-dependent length biases are Bayesian. First, the
distribution of the polar angle of lines in natural
environments and the distribution of observer viewing
angle in natural viewing need to be characterized.
Second, the effect of sensory noise needs to be
incorporated in the model. If a Bayesian account holds,
then the question arises what determines to what extent
observers in psychophysical experiments use priors
derived from natural statistics versus priors derived
from the experimental stimulus distributions. More
specifically for the HVI, why would people bring to bear
statistics from 3-D scenes on the inference of stimuli
that quite obviously lie in a frontoparallel plane?

Keywords: horizontal–vertical illusion, length
perception, Bayesian observer, natural statistics
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Künnapas, T. M. (1957a). Interocular differences in
the vertical-horizontal illusion. Acta Psychologica,
13, 253–259.
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Appendix A: Fitting multiple
psychometric curves with a shared
lapse rate

In an experiment with multiple conditions, it often
happens that one or more parameters are shared
among conditions. An example is a lapse rate, which is
usually regarded as the probability that the subject
blinks or has a lapse of attention; there is often no
strong reason to believe that the lapse rate will vary
across experimental conditions. Assuming that a
parameter is shared across conditions will allow for
more precise estimation of the remaining parameters.
Below and in Figure A1, we describe the posterior
distributions and posterior mean estimates of the
parameters in such situations. This treatment is not tied
to our specific experiment.

Step 1: Parameter log likelihood by condition. We
index condition by i. We assume we have a parameter
log likelihood by condition—in our cases, LLi(li, ri, k)
as given by Equation 2. Here, k represents the
parameter(s) that is (are) shared among conditions
whereas li and ri are both condition-specific parame-
ters. We denote the set of all li’s collectively by ~l and
the set of all ri’s by ~r.

Step 2: Posterior over shared parameter. It turns out
to be easiest to first compute the posterior over k. We

do this by marginalizing over the l’s and r’s and
assuming uniform priors over all variables:

p kjdatað Þ}p datajkð Þ

¼
ZZ

p dataj~l;~r; kð Þ d~l d~r

¼
ZZ Y

k

p datakjlk;rk; kð Þ
 !

d l!d~r

¼
Y
k

ZZ
p datakjlk; rk; kð Þ dlk drk

¼ e

P
k

LL�
kY

k

ZZ
eLLk lk;rk;kð Þ�LL�

k dlk drk

}
Y
k

ZZ
eLLk lk;rk;kð Þ�LL�k dlk drk ð9Þ

where LLk* is the maximum log likelihood across
parameter combinations in the kth condition. We
separated this term off to prevent the exponentials
inside the integrals from being numerically zero.
Normalizing, we find for the posterior over k,

p kjdatað Þ ¼

Q
k

RR
eLLk lk;rk;kð Þ�LL�

k dlk drk

R Q
k

RR
eLLk lk;rk;kð Þ�LL�

k dlk drk

� �
dk
:

Step 3: Posterior over a condition-specific parameter
given k. We now compute the posterior over li

conditioned on k. This is easy because k is the only
variable that connects the conditions; therefore, when k
is given, the posterior over li only depends on the data
in the ith condition:

p lijdata; kð Þ ¼ p lijdatai; kð Þ}p dataijli; kð Þ

¼
Z

p dataijli;ri; kð Þ dri

¼
Z

eLLi li;ri;kð Þ dri:

Normalizing, we find

p lijdata; kð Þ ¼
R
eLLi li;ri;kð Þ driRR

eLLi li;ri;kð Þ dli dri
: ð10Þ

Similarly, the posterior of the noise parameter in the ith
condition, ri, conditioned on k is

p rijdata; kð Þ ¼
R
eLLi li;ri;kð Þ dliRR

eLLi li;ri;kð Þ dli dri
: ð11Þ

Step 4: Posterior over a condition-specific parameter.
Now we are ready to compute the posterior over li not
conditioned on k by integrating over the conditioned
posterior:
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p lijdatað Þ ¼
Z

p lijdata; kð Þp kjdatað Þ dk; ð12Þ

where the first factor in the integrand is given by
Equation 10 and the second factor by Equation 9.

Similarly, the posterior of ri, is given by

p rijdatað Þ ¼
Z

p rijdata; kð Þp kjdatað Þ dk: ð13Þ

Finally, we can obtain point estimates by taking the
means under these posteriors.

Figure A1. Flow diagram for Bayesian estimation of the psychometric curve parameters li and ri when multiple conditions are

assumed to share the same lapse rate k.
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Appendix B: Estimates of the noise
parameters of the psychometric
curves

Figure A2. Mean and standard error of the mean of the estimate of the noise parameter ri of the psychometric curve as a function of

the orientation of the comparison line when the orientation of the standard line was (A) 08, 308, 458, 608, or 908 or (B) 908, 1208, 1358,

1508, or 08. (C) Mean and standard error of the mean of the estimate of ri when hstandard equals hcomparison. These data are a subset of

the data in panels A and B.
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